Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 49
Filtrar
1.
Genet Med ; 26(2): 101013, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-37924258

RESUMO

PURPOSE: RNF213, encoding a giant E3 ubiquitin ligase, has been recognized for its role as a key susceptibility gene for moyamoya disease. Case reports have also implicated specific variants in RNF213 with an early-onset form of moyamoya disease with full penetrance. We aimed to expand the phenotypic spectrum of monogenic RNF213-related disease and to evaluate genotype-phenotype correlations. METHODS: Patients were identified through reanalysis of exome sequencing data of an unselected cohort of unsolved pediatric cases and through GeneMatcher or ClinVar. Functional characterization was done by proteomics analysis and oxidative phosphorylation enzyme activities using patient-derived fibroblasts. RESULTS: We identified 14 individuals from 13 unrelated families with (de novo) missense variants in RNF213 clustering within or around the Really Interesting New Gene (RING) domain. Individuals presented either with early-onset stroke (n = 11) or with Leigh syndrome (n = 3). No genotype-phenotype correlation could be established. Proteomics using patient-derived fibroblasts revealed no significant differences between clinical subgroups. 3D modeling revealed a clustering of missense variants in the tertiary structure of RNF213 potentially affecting zinc-binding suggesting a gain-of-function or dominant negative effect. CONCLUSION: De novo missense variants in RNF213 clustering in the E3 RING or other regions affecting zinc-binding lead to an early-onset syndrome characterized by stroke or Leigh syndrome.


Assuntos
Doença de Leigh , Doença de Moyamoya , Acidente Vascular Cerebral , Humanos , Criança , Doença de Moyamoya/genética , Doença de Leigh/complicações , Fatores de Transcrição/genética , Ubiquitina-Proteína Ligases/genética , Zinco , Predisposição Genética para Doença , Adenosina Trifosfatases/genética
2.
Clin Immunol ; 256: 109777, 2023 11.
Artigo em Inglês | MEDLINE | ID: mdl-37741518

RESUMO

C-terminal variants in CDC42 encoding cell division control protein 42 homolog underlie neonatal-onset cytopenia, autoinflammation, rash, and hemophagocytic lymphohistiocytosis (NOCARH). Pyrin inflammasome hyperactivation has been shown to contribute to disease pathophysiology. However, mortality of NOCARH patients remains high despite inflammasome-focused treatments. Here, we demonstrate in four NOCARH patients from three families that cell-intrinsic activation of type I interferon (IFN) is a previously unrecognized driver of autoinflammation in NOCARH. Our data show that aberrant innate immune activation is caused by sensing of cytosolic nucleic acids released from mitochondria, which exhibit disturbances in integrity and dynamics due to CDC42 dysfunction. In one of our patients, treatment with the Janus kinase inhibitor ruxolitinib led to complete remission, indicating that inhibition of type I IFN signaling may have an important role in the management of autoinflammation in patients with NOCARH.


Assuntos
Interferon Tipo I , Linfo-Histiocitose Hemofagocítica , Humanos , Recém-Nascido , Proteína cdc42 de Ligação ao GTP , Inflamassomos/genética , Linfo-Histiocitose Hemofagocítica/etiologia , Nitrilas , Síndrome
3.
Case Rep Med ; 2023: 8436715, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37153356

RESUMO

Background: Primary ciliary dyskinesia (PCD), also known as the immotile-cilia syndrome, is a clinically and genetically heterogeneous syndrome. Improper function of the cilia causes impaired mucociliary clearance. Neonatal respiratory distress, rhinosinusitis, recurrent chest infections, wet cough, and otitis media are respiratory presentations of this disease. It could also manifest as infertility in males as well as laterality defects in both sexes, such as situs abnormalities (Kartagener syndrome). During the past decade, numerous pathogenic variants in 40 genes have been identified as the causatives of primary ciliary dyskinesia. DNAH11 (dynein axonemal heavy chain 11) is a gene that is responsible for the production of cilia's protein and encodes the outer dynein arm. Dynein heavy chains are motor proteins of the outer dynein arms and play an essential role in ciliary motility. Case Presentation. A 3-year-old boy, the offspring of consanguineous parents, was referred to the pediatric clinical immunology outpatient department with a history of recurrent respiratory tract infections and periodic fever. Furthermore, on medical examination, situs inversus was recognized. His lab results revealed elevated levels of erythrocyte sedimentation rate (ESR) and C reactive protein (CRP). Serum IgG, IgM, and IgA levels were normal, while IgE levels were elevated. Whole exome sequencing (WES) was performed for the patient. WES demonstrated a novel homozygous nonsense variant in DNAH11 (c.5247G > A; p. Trp1749Ter). Conclusion: We reported a novel homozygous nonsense variant in DNAH11 in a 3-year-old boy with primary ciliary dyskinesia. Biallelic pathogenic variants in one of the many coding genes involved in the process of ciliogenesis lead to PCD.

4.
Infection ; 51(5): 1383-1398, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-36821024

RESUMO

BACKGROUND: The Borna disease virus (BoDV-1) is an emerging zoonotic virus causing severe and mostly fatal encephalitis in humans. METHODS AND RESULTS: A local cluster of fatal BoDV-1 encephalitis cases was detected in the same village three years apart affecting two children. While the first case was diagnosed late in the course of disease, a very early diagnosis and treatment attempt facilitated by heightened awareness was achieved in the second case. Therapy started as early as day 12 of disease. Antiviral therapy encompassed favipiravir and ribavirin, and, after bioinformatic modelling, also remdesivir. As the disease is immunopathogenetically mediated, an intensified anti-inflammatory therapy was administered. Following initial impressive clinical improvement, the course was also fatal, although clearly prolonged. Viral RNA was detected by qPCR in tear fluid and saliva, constituting a possible transmission risk for health care professionals. Highest viral loads were found post mortem in the olfactory nerve and the limbic system, possibly reflecting the portal of entry for BoDV-1. Whole exome sequencing in both patients yielded no hint for underlying immunodeficiency. Full virus genomes belonging to the same cluster were obtained in both cases by next-generation sequencing. Sequences were not identical, indicating viral diversity in natural reservoirs. Specific transmission events or a common source of infection were not found by structured interviews. Patients lived 750m apart from each other and on the fringe of the settlement, a recently shown relevant risk factor. CONCLUSION: Our report highlights the urgent necessity of effective treatment strategies, heightened awareness and early diagnosis. Gaps of knowledge regarding risk factors, transmission events, and tailored prevention methods become apparent. Whether this case cluster reflects endemicity or a geographical hot spot needs further investigation.


Assuntos
Doença de Borna , Vírus da Doença de Borna , Encefalite , Vírus , Animais , Humanos , Criança , Vírus da Doença de Borna/genética , Encefalite/diagnóstico , Encefalite/tratamento farmacológico , Encefalite/epidemiologia , Vírus/genética , RNA Viral/genética
5.
Artigo em Inglês | MEDLINE | ID: mdl-35996251

RESUMO

BACKGROUND: Immunodeficiency, centromeric instability, and facial anomalies (ICF) syndrome is a rare autosomal recessive disorder. ICF1 is caused by bi-allelic mutations in the gene encoding deoxyribonucleic acid methyltransferase-3B (DNMT3B). Herein, we report a novel homozygous DNMT3B mutation in a patient with ICF1. CASE PRESENTATION: An eight-month-old Iranian Caucasian infant of consanguineous 1st-degree cousins presented to our clinic for evaluation of neutropenia. Physical examination was unremarkable except for low-set ears and a systolic cardiac murmur. He had a history of recurrent respiratory infections and oral thrush. Moreover, a collateral artery between the bronchial and pulmonary arteries was observed on the angiogram, mimicking a patent ductus arteriosus on the echocardiogram. Growth percentiles were normal; however, he had a neurodevelopmental delay. Family history was significant for a sibling who deceased at nine months of age after recurrent respiratory infections. Laboratory evaluation revealed a normal white blood cell count with neutropenia and normal bone marrow studies. He had hypogammaglobinemia with normal flow cytometric studies and was treated with prophylactic trimethoprim-sulfamethoxazole and itraconazole. After that, he was re-admitted three times due to recurrent episodes of pneumonia and an episode of pseudomonas aeruginosa meningitis. Currently, he is five years old and doing well on monthly intravenous immunoglobulin. Due to recurrent infections, hypogammaglobulinemia, and neutropenia, as well as a family history of consanguinity and a sibling who deceased during infancy, a primary immune deficiency was suspected. Genetic studies utilizing whole-exome sequencing demonstrated a homozygous missense mutation in DNMT3B (LRG_56t1:c.2008C>T; p.Arg670Trp) in the patient studied. The mutation has not been previously reported. CONCLUSION: We describe a novel homozygous DNMT3B mutation in an Iranian boy with ICF1. It is associated with recurrent infections, hypogammaglobinemia, neutropenia, mild facial anomalies, and a bronchopulmonary collateral artery.


Assuntos
Síndromes de Imunodeficiência , Neutropenia , Doenças da Imunodeficiência Primária , Infecções Respiratórias , Masculino , Lactente , Humanos , Pré-Escolar , Metiltransferases/genética , Irã (Geográfico) , Reinfecção , DNA (Citosina-5-)-Metiltransferases/genética , Síndromes de Imunodeficiência/complicações , Síndromes de Imunodeficiência/diagnóstico , Síndromes de Imunodeficiência/genética , Doenças da Imunodeficiência Primária/diagnóstico , Doenças da Imunodeficiência Primária/genética , Mutação , Artérias
6.
Blood ; 141(6): 645-658, 2023 02 09.
Artigo em Inglês | MEDLINE | ID: mdl-36223592

RESUMO

The mechanisms of coordinated changes in proteome composition and their relevance for the differentiation of neutrophil granulocytes are not well studied. Here, we discover 2 novel human genetic defects in signal recognition particle receptor alpha (SRPRA) and SRP19, constituents of the mammalian cotranslational targeting machinery, and characterize their roles in neutrophil granulocyte differentiation. We systematically study the proteome of neutrophil granulocytes from patients with variants in the SRP genes, HAX1, and ELANE, and identify global as well as specific proteome aberrations. Using in vitro differentiation of human induced pluripotent stem cells and in vivo zebrafish models, we study the effects of SRP deficiency on neutrophil granulocyte development. In a heterologous cell-based inducible protein expression system, we validate the effects conferred by SRP dysfunction for selected proteins that we identified in our proteome screen. Thus, SRP-dependent protein processing, intracellular trafficking, and homeostasis are critically important for the differentiation of neutrophil granulocytes.


Assuntos
Células-Tronco Pluripotentes Induzidas , Proteoma , Animais , Humanos , Peixe-Zebra , Genética Humana , Mamíferos , Proteínas Adaptadoras de Transdução de Sinal
7.
J Allergy Clin Immunol ; 151(3): 791-796.e7, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36462957

RESUMO

BACKGROUND: Toll-like receptors (TLRs) are important pattern recognition receptors that sense microbes and control host defense. Myeloid differentiation protein 2 (MD2) is the indispensable coreceptor for TLR4, facilitating the binding to the gram-negative bacterial cell wall component LPS and activation of downstream signaling. OBJECTIVE: We sought to provide phenotypic and mechanistic insights into human MD2 deficiency. METHODS: To elucidate the genetic cause in a patient with very early onset inflammatory bowel disease, we performed whole-exome sequencing and studied the functional consequences of the identified mutation in LY96 (encoding for MD2) in genetically engineered induced pluripotent stem cell-derived macrophages with knockout of MD2 or knockin of the patient-specific mutation, including TLR4-mediated signaling, cytokine production, and bacterial handling. RESULTS: Whole-exome sequencing identified a homozygous in-frame deletion in the LY96 gene (c.347_349delCAA; p.Thr116del) in a patient with very early onset inflammatory bowel disease and a sibling presenting with pneumonia and otitis media. Induced pluripotent stem cell-derived macrophages with knockout of MD2 or expression of the Thr116del mutation showed impaired activation of nuclear factor kappa B and mitogen-activated protein kinase signaling as well as TLR4 endocytosis on challenge with LPS or bacteria. In addition, MD2-deficient macrophages showed decreased cytokine expression (eg, IL-6, TNF, and IL-10) in response to LPS or gram-negative but not gram-positive bacteria. CONCLUSIONS: Human MD2 deficiency causes defective TLR4 signaling in response to LPS or gram-negative bacteria. The clinical manifestations and expressivity might be variable due to unknown secondary risk factors. Because TLR4 represents a therapeutic target for multiple inflammatory conditions, our study may provide insights into potential side effects of pharmacological TLR4 targeting.


Assuntos
Lipopolissacarídeos , Receptor 4 Toll-Like , Humanos , Citocinas/metabolismo , Lipopolissacarídeos/farmacologia , Antígeno 96 de Linfócito/metabolismo , Transdução de Sinais , Receptor 4 Toll-Like/genética , Receptores Toll-Like/metabolismo
8.
Sci Rep ; 12(1): 3906, 2022 03 10.
Artigo em Inglês | MEDLINE | ID: mdl-35273242

RESUMO

NOD2 polymorphisms may affect sensing of the bacterial muramyl dipeptide (MDP) and trigger perturbed inflammatory responses. Genetic screening of a patient with immunodeficiency and enteropathy revealed a rare homozygous missense mutation in the first CARD domain of NOD2 (ENST00000300589; c.160G > A, p.E54K). Biochemical assays confirmed impaired NOD2-dependent signaling and proinflammatory cytokine production in patient's cells and heterologous cellular models with overexpression of the NOD2 mutant. Immunoprecipitation-coupled mass spectrometry unveiled the ATPase valosin-containing protein (VCP) as novel interaction partner of wildtype NOD2, while the binding to the NOD2 variant p.E54K was abrogated. Knockdown of VCP in coloncarcinoma cells led to impaired NF-κB activity and IL8 expression upon MDP stimulation. In contrast, tunicamycin-induced ER stress resulted in increased IL8, CXCL1, and CXCL2 production in cells with knockdown of VCP, while enhanced expression of these proinflammatory molecules was abolished upon knockout of NOD2. Taken together, these data suggest that VCP-mediated inflammatory responses upon ER stress are NOD2-dependent.


Assuntos
Estresse do Retículo Endoplasmático , Interleucina-8 , Acetilmuramil-Alanil-Isoglutamina/farmacologia , Humanos , Interleucina-8/metabolismo , Proteína Adaptadora de Sinalização NOD2/genética , Proteína Adaptadora de Sinalização NOD2/metabolismo , Proteína com Valosina/genética , Proteína com Valosina/metabolismo
10.
Artigo em Inglês | MEDLINE | ID: mdl-35105298

RESUMO

BACKGROUND: Chromosome Xp21 deletion syndrome is a rare X-linked recessive defect that occurs as a result of multiple gene deletions, including Glycerol kinase (GK) and its neighboring genes, dystrophin, which causes Duchenne muscular dystrophy (DMD), and NR0B1, which causes congenital adrenal hypoplasia (CAHhttps://www.omim.org/entry/300200). Patients usually present with glycerol kinase deficiency, congenital adrenal hypoplasia, Duchenne muscular dystrophy, hyperglycerolemia, and glyceroluria, associated with DMD and/or CAH, growth failure, myopathy, osteoporosis, mental retardation, and psychomotor retardation. CASE PRESENTATION: Herein, we report a 3-year- old boy from Iraq who had bloody diarrhea, food intolerance and abdominal cramp, adrenal insufficiency, recurrent fevers, tuberculosis (TB) infection, cervical abscess, oral thrush, cervical and mediastinal lymphadenopathies, developmental delay, and undescended testis. His parents are non-consanguine and had no family history of diseases. Next generation sequencing demonstrated a hemizygote deletion in chromosome X. CONCLUSION: Loss of a large part of the X-chromosome most likely can explain the clinical findings of this patient. Contiguous gene deletion syndrome in Xp21 should be considered after diagnosing adrenal insufficiency to treat metabolic complications efficiently.


Assuntos
Insuficiência Adrenal , Distrofia Muscular de Duchenne , Pré-Escolar , Glicerol Quinase , Humanos , Hipoadrenocorticismo Familiar , Masculino , Síndrome , Cromossomo X
11.
Sci Immunol ; 6(65): eabf7473, 2021 Nov 05.
Artigo em Inglês | MEDLINE | ID: mdl-34739342

RESUMO

Inflammatory bowel disease (IBD) is characterized by inappropriate immune responses to the microbiota in genetically susceptible hosts, but little is known about the pathways that link individual genetic alterations to microbiota-dependent inflammation. Here, we demonstrated that the loss of X-linked inhibitor of apoptosis protein (XIAP), a gene associated with Mendelian IBD, rendered Paneth cells sensitive to microbiota-, tumor necrosis factor (TNF)­, receptor-interacting protein kinase 1 (RIPK1)­, and RIPK3-dependent cell death. This was associated with deficiency in Paneth cell­derived antimicrobial peptides and alterations in the stratification and composition of the microbiota. Loss of XIAP was not sufficient to elicit intestinal inflammation but provided susceptibility to pathobionts able to promote granulomatous ileitis, which could be prevented by administration of a Paneth cell­derived antimicrobial peptide. These data reveal a pathway critical for host-microbial cross-talk, which is required for intestinal homeostasis and the prevention of inflammation and which is amenable to therapeutic targeting.


Assuntos
Inflamação/imunologia , Proteínas Inibidoras de Apoptose/imunologia , Intestinos/imunologia , Microbiota/imunologia , Proteínas Inibidoras de Apoptose Ligadas ao Cromossomo X/imunologia , Animais , Peptídeos Antimicrobianos/administração & dosagem , Peptídeos Antimicrobianos/biossíntese , Peptídeos Antimicrobianos/farmacologia , Feminino , Humanos , Inflamação/tratamento farmacológico , Inflamação/patologia , Proteínas Inibidoras de Apoptose/deficiência , Proteínas Inibidoras de Apoptose/genética , Intestinos/efeitos dos fármacos , Intestinos/patologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Microbiota/efeitos dos fármacos , Celulas de Paneth/química , Celulas de Paneth/imunologia , Proteínas Inibidoras de Apoptose Ligadas ao Cromossomo X/deficiência , Proteínas Inibidoras de Apoptose Ligadas ao Cromossomo X/genética
12.
Sci Immunol ; 6(61)2021 07 16.
Artigo em Inglês | MEDLINE | ID: mdl-34272227

RESUMO

Cytoplasmic double-stranded RNA is sensed by RIG-I-like receptors (RLRs), leading to induction of type I interferons (IFN-Is), proinflammatory cytokines, and apoptosis. Here, we elucidate signaling mechanisms that lead to cytokine secretion and cell death induction upon stimulation with the bona fide RIG-I ligand 5'-triphosphate RNA (3p-RNA) in tumor cells. We show that both outcomes are mediated by dsRNA-receptor families with RLR being essential for cytokine production and IFN-I-mediated priming of effector pathways but not for apoptosis. Affinity purification followed by mass spectrometry and subsequent functional analysis revealed that 3p-RNA bound and activated oligoadenylate synthetase 1 and RNase L. RNase L-deficient cells were profoundly impaired in their ability to undergo apoptosis. Mechanistically, the concerted action of translational arrest triggered by RNase L and up-regulation of NOXA was needed to deplete the antiapoptotic MCL-1 to cause intrinsic apoptosis. Thus, 3p-RNA-induced apoptosis is a two-step process consisting of RIG-I-dependent priming and an RNase L-dependent effector phase.


Assuntos
2',5'-Oligoadenilato Sintetase/imunologia , Endorribonucleases/imunologia , Neoplasias/imunologia , Receptores do Ácido Retinoico/imunologia , 2',5'-Oligoadenilato Sintetase/genética , Proteínas Adaptadoras de Transdução de Sinal/genética , Animais , Apoptose , Linhagem Celular Tumoral , Técnicas de Cocultura , Proteína DEAD-box 58/genética , Endorribonucleases/genética , Humanos , Helicase IFIH1 Induzida por Interferon/genética , Ligantes , Camundongos , Receptores Imunológicos/genética
13.
Clin Immunol ; 229: 108779, 2021 08.
Artigo em Inglês | MEDLINE | ID: mdl-34116213

RESUMO

CTLA4-haploinsufficiency is a complex disease of immune dysregulation presenting with a broad spectrum of clinical manifestations. CTLA4-Fc fusion proteins such as abatacept have been described to alleviate immune dysregulation in several adult cases of CTLA4-haploinsufficiency. However, until now only few cases of pediatric CTLA4-haploinsufficiency treated with abatacept have been described. Here we present two pediatric cases of severe CTLA4-haploinsufficiency refractory to conventional immunosuppressive therapies that responded rapidly to treatment with abatacept. No side effects were observed during a follow-up period of 7-15 months. While one patient has successfully undergone HSCT the second patient continues to receive abatacept. Our cases demonstrate safe medium-term use of abatacept in the pediatric population.


Assuntos
Abatacepte/uso terapêutico , Antígeno CTLA-4/deficiência , Imunossupressores/uso terapêutico , Adolescente , Antígeno CTLA-4/genética , Antígeno CTLA-4/imunologia , Feminino , Haploinsuficiência/genética , Haploinsuficiência/imunologia , Transplante de Células-Tronco Hematopoéticas , Humanos , Doenças do Sistema Imunitário/genética , Doenças do Sistema Imunitário/imunologia , Doenças do Sistema Imunitário/terapia , Masculino , Mutação de Sentido Incorreto , Linfócitos T Reguladores/imunologia
14.
J Clin Immunol ; 41(7): 1536-1548, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-34080085

RESUMO

Bi-allelic variants in the dedicator of cytokinesis 8 (DOCK8) gene cause a combined immunodeficiency, characterized by recurrent sinopulmonary and skin infections, food allergies, eczema, eosinophilia, and elevated IgE. Long-term outcome is poor given susceptibility to infections, malignancy, and vascular complications. Allogeneic hematopoietic stem cell transplantation is currently the only curative treatment option and has shown promising outcome. The impact of mixed chimerism on long-term outcome is unclear. We reasoned that reversal of disease phenotype would depend on cell lineage-specific chimerism. DOCK8 variants were confirmed by Sanger and/or exome sequencing and immunoblot and/or intracellular flow cytometry. Donor chimerism was analyzed by XY-fluorescence in situ hybridization or quantitative short tandem repeat PCR. Outcome was assessed by laboratory tests, lymphocyte subsets, intracellular DOCK8 protein flow cytometry, T-cell proliferation analysis, and multiparameter immunoblot allergy screening. We report on nine patients, four of whom with mixed chimerism, with a median follow-up of 78 months after transplantation. Overall, we report successful transplantation with improvement of susceptibility to infections and allergies, and resolution of eczema in all patients. Immunological outcome in patients with mixed chimerism suggests a selective advantage for wild-type donor T-cells but lower donor B-cell chimerism possibly results in a tendency to hypogammaglobulinemia. No increased infectious and allergic complications were associated with mixed chimerism. Aware of the relatively small cohort size, we could not demonstrate a consistent detrimental effect of mixed chimerism on clinical outcomes. We nevertheless advocate aiming for complete donor chimerism in treating DOCK8 deficiency, but recommend reduced toxicity conditioning.


Assuntos
Fatores de Troca do Nucleotídeo Guanina/deficiência , Fatores de Troca do Nucleotídeo Guanina/genética , Transplante de Células-Tronco Hematopoéticas , Síndromes de Imunodeficiência/terapia , Adolescente , Criança , Quimerismo , Feminino , Humanos , Hipersensibilidade/genética , Hipersensibilidade/imunologia , Hipersensibilidade/terapia , Imunoglobulina E/sangue , Síndromes de Imunodeficiência/genética , Síndromes de Imunodeficiência/imunologia , Lactente , Contagem de Linfócitos , Masculino , Estudos Retrospectivos , Viroses/genética , Viroses/imunologia , Viroses/terapia
15.
Sci Immunol ; 6(60)2021 06 18.
Artigo em Inglês | MEDLINE | ID: mdl-34145065

RESUMO

Analysis of autoinflammatory and immunodeficiency disorders elucidates human immunity and fosters the development of targeted therapies. Oligoadenylate synthetase 1 is a type I interferon-induced, intracellular double-stranded RNA (dsRNA) sensor that generates 2'-5'-oligoadenylate to activate ribonuclease L (RNase L) as a means of antiviral defense. We identified four de novo heterozygous OAS1 gain-of-function variants in six patients with a polymorphic autoinflammatory immunodeficiency characterized by recurrent fever, dermatitis, inflammatory bowel disease, pulmonary alveolar proteinosis, and hypogammaglobulinemia. To establish causality, we applied genetic, molecular dynamics simulation, biochemical, and cellular functional analyses in heterologous, autologous, and inducible pluripotent stem cell-derived macrophages and/or monocytes and B cells. We found that upon interferon-induced expression, OAS1 variant proteins displayed dsRNA-independent activity, which resulted in RNase L-mediated RNA cleavage, transcriptomic alteration, translational arrest, and dysfunction and apoptosis of monocytes, macrophages, and B cells. RNase L inhibition with curcumin modulated and allogeneic hematopoietic cell transplantation cured the disorder. Together, these data suggest that human OAS1 is a regulator of interferon-induced hyperinflammatory monocyte, macrophage, and B cell pathophysiology.


Assuntos
2',5'-Oligoadenilato Sintetase/genética , Doenças Hereditárias Autoinflamatórias/genética , Doenças da Imunodeficiência Primária/genética , 2',5'-Oligoadenilato Sintetase/imunologia , 2',5'-Oligoadenilato Sintetase/isolamento & purificação , 2',5'-Oligoadenilato Sintetase/metabolismo , Linfócitos B/imunologia , Células Cultivadas , Análise Mutacional de DNA , Endorribonucleases/genética , Endorribonucleases/metabolismo , Ensaios Enzimáticos , Mutação com Ganho de Função/imunologia , Técnicas de Inativação de Genes , Transplante de Células-Tronco Hematopoéticas , Doenças Hereditárias Autoinflamatórias/diagnóstico , Doenças Hereditárias Autoinflamatórias/imunologia , Doenças Hereditárias Autoinflamatórias/terapia , Heterozigoto , Humanos , Lactente , Recém-Nascido , Interferon Tipo I/metabolismo , Macrófagos/imunologia , Simulação de Dinâmica Molecular , Monócitos/imunologia , Cultura Primária de Células , Doenças da Imunodeficiência Primária/diagnóstico , Doenças da Imunodeficiência Primária/imunologia , Doenças da Imunodeficiência Primária/terapia , Proteínas Recombinantes/genética , Proteínas Recombinantes/imunologia , Proteínas Recombinantes/isolamento & purificação , Proteínas Recombinantes/metabolismo , Transdução de Sinais/genética , Transdução de Sinais/imunologia
16.
Artigo em Inglês | MEDLINE | ID: mdl-34137364

RESUMO

BACKGROUND: Severe congenital neutropenia (SCN4) caused by mutations in glucose-6- phosphatase catalytic subunit 3 (G6PC3) is characterized by recurrent infections due to severe neutropenia, may be accompanied by other extra-hematopoietic manifestations; including structural heart defects, urogenital abnormalities, prominent superficial venous markings, growth retention, and inflammatory bowel diseases with rare incidence. The homozygous or compound heterozygous mutations of G6PC3 are responsible for most cases of autosomal recessive SCN4. Herein, we present two cases of SCN4 affected by novel mutations in the G6PC3, in addition to a summarized list of variants in G6PC3 gene that are reported as pathogenic and related to the SCN4 phenotype. CASE PRESENTATION: Herein, we present two cases of SCN4; the first case was a three-months old boy with severe neutropenia and prior history of hospitalization due to umbilical separation, umbilical herniation, omphalitis, and pyelonephritis; and the second case was an eight-year-old with a history of neutropenia, recurrent and severe episodes of intractable diarrhea, refractory rectovaginal and rectoperineal fistula, congenital inguinal hernia, and ASD type 2. Whole exome sequencing was performed for both cases, which revealed two novel homozygous missense mutations in G6PC3 that were predicted to be deleterious; c.337G>A, p. Gly113Arg in the first case and c.479C>T; P. Ser160Leu in the second case. To our knowledge, both of these two mutations have not been reported in the G6PDC3 gene. CONCLUSION: In patients with severe neutropenia with varying extra hematopoietic syndrome, mutation of G6PC3 should be suspected after ruling out other mutations related to neutropenia. This study pointed toward novel G6PC3 mutations that should be considered in order to diagnose patients with severe congenital neutropenia.


Assuntos
Síndrome Congênita de Insuficiência da Medula Óssea/genética , Glucose-6-Fosfatase/genética , Neutropenia/congênito , Criança , Síndrome Congênita de Insuficiência da Medula Óssea/diagnóstico , Feminino , Humanos , Lactente , Masculino , Mutação , Neutropenia/diagnóstico , Neutropenia/genética , Fenótipo
17.
Pediatr Dev Pathol ; 24(3): 252-257, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33683986

RESUMO

Immune dysregulation, polyendocrinopathy and enteropathy, X-linked (IPEX) syndrome is a rare disorder caused by loss-of-function mutations in the gene forkhead box protein 3 (FOXP3). IPEX patients frequently show chronic diarrhea (enteropathy) associated with villous atrophies in the small intestine. Our case is different from this classical information in the literature, since he presented with neonatal onset inflammatory bowel disease within the first months of life accompanied by deep ulcers throughout colonic mucosa. Moreover, he developed chronic lung disease during follow-up and histopathological examinations showed granulomas in both gastrointestinal tract and lung parenchyma. Genetic analysis revealed the diagnosis of IPEX syndrome with a germline mutation in FOXP3. Thus, our study provides an unusual presentation of IPEX syndrome with colitis and granulomas presence in histopathological examinations.


Assuntos
Colite/patologia , Diabetes Mellitus Tipo 1/congênito , Diarreia/patologia , Doenças Genéticas Ligadas ao Cromossomo X/patologia , Granuloma do Sistema Respiratório/patologia , Doenças do Sistema Imunitário/congênito , Colite/genética , Diabetes Mellitus Tipo 1/genética , Diabetes Mellitus Tipo 1/patologia , Diarreia/genética , Duodeno/patologia , Fatores de Transcrição Forkhead/genética , Doenças Genéticas Ligadas ao Cromossomo X/genética , Granuloma/genética , Granuloma/patologia , Granuloma do Sistema Respiratório/genética , Humanos , Doenças do Sistema Imunitário/genética , Doenças do Sistema Imunitário/patologia , Recém-Nascido , Masculino , Mutação
18.
Clin Genet ; 99(6): 789-801, 2021 06.
Artigo em Inglês | MEDLINE | ID: mdl-33598926

RESUMO

Aminoacyl-tRNA synthetases (ARSs) catalyze the first step of protein biosynthesis (canonical function) and have additional (non-canonical) functions outside of translation. Bi-allelic pathogenic variants in genes encoding ARSs are associated with various recessive mitochondrial and multisystem disorders. We describe here a multisystem clinical phenotype based on bi-allelic mutations in the two genes (FARSA, FARSB) encoding distinct subunits for tetrameric cytosolic phenylalanyl-tRNA synthetase (FARS1). Interstitial lung disease with cholesterol pneumonitis on histology emerged as an early characteristic feature and significantly determined disease burden. Additional clinical characteristics of the patients included neurological findings, liver dysfunction, and connective tissue, muscular and vascular abnormalities. Structural modeling of newly identified missense mutations in the alpha subunit of FARS1, FARSA, showed exclusive mapping to the enzyme's conserved catalytic domain. Patient-derived mutant cells displayed compromised aminoacylation activity in two cases, while remaining unaffected in another. Collectively, these findings expand current knowledge about the human ARS disease spectrum and support a loss of canonical and non-canonical function in FARS1-associated recessive disease.


Assuntos
Doença de Charcot-Marie-Tooth/genética , Doenças Pulmonares Intersticiais/genética , Pulmão/patologia , Mutação/genética , Fenilalanina-tRNA Ligase/genética , Adolescente , Alelos , Criança , Pré-Escolar , Feminino , Genes Recessivos/genética , Humanos , Lactente , Recém-Nascido , Masculino , Linhagem , Fenótipo
19.
J Pediatr Hematol Oncol ; 43(3): e452-e456, 2021 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-32205782

RESUMO

Various autoimmune diseases may be associated with primary immune deficiencies. We reported a case with a loss-of-function mutation in DNASE1L3, a gene described previously in families with systemic lupus erythematosus. In addition, the patient showed a novel homozygous missense variant in DOCK8, a gene known to be responsible for the hyper-IgE recurrent infection syndrome (HIES). A 3-year-old girl born to consanguine parents presented with chronic urticarial rash, hemolytic anemia, pulmonary hemorrhage, and hypovolemic shock findings. She had a low hemoglobin level, a positive direct antiglobulin test, antinuclear antibody and anti-double stranded DNA, low C3 and C4, third-degree tricuspid regurgitation, and severe enlargement of the right ventricle on echocardiography, suggesting pulmonary embolism. Despite treatment with intravenous immunoglobulin, pulse metilprednisolone, rituximab, and supportive treatment for shock, the patient died on the seventh day. Whole-exome sequencing indicated a homozygous stop variant c.537G>A (p. Trp179Ter) in DNASE1L3. In addition, a possibly pathogenic homozygous missense variant in the HIES gene DOCK8 was detected. The occurrence of potentially clinically relevant, genetic variants in several genes posed various challenges with respect to diagnosis, treatment, and prognosis.


Assuntos
Anemia Hemolítica Autoimune/genética , Endodesoxirribonucleases/genética , Fatores de Troca do Nucleotídeo Guanina/genética , Anemia Hemolítica Autoimune/patologia , Pré-Escolar , Feminino , Humanos , Mutação com Perda de Função , Mutação de Sentido Incorreto
20.
Blood ; 137(8): 1037-1049, 2021 02 25.
Artigo em Inglês | MEDLINE | ID: mdl-33094319

RESUMO

Emerging immunotherapies such as chimeric antigen receptor T cells have advanced the treatment of acute lymphoblastic leukemia. In contrast, long-term control of acute myeloid leukemia (AML) cannot be achieved by single lineage-specific targeting while sparing benign hematopoiesis. In addition, heterogeneity of AML warrants combinatorial targeting, and several suitable immunotargets (HAVCR2/CD33 and HAVCR2/CLEC12A) have been identified in adult AML. However, clinical and biologic characteristics of AML differ between children and the elderly. Here, we analyzed 36 bone marrow (BM) samples of pediatric AML patients and 13 age-matched healthy donors using whole RNA sequencing of sorted CD45dim and CD34+CD38-CD45dim BM populations and flow cytometry for surface expression of putative target antigens. Pediatric AML clusters apart from healthy myeloid BM precursors in principal-component analysis. Known immunotargets of adult AML, such as IL3RA, were not overexpressed in pediatric AML compared with healthy precursors by RNA sequencing. CD33 and CLEC12A were the most upregulated immunotargets on the RNA level and showed the highest surface expression on AML detected by flow cytometry. KMT2A-mutated infant AML clusters separately by RNA sequencing and overexpresses FLT3, and hence, CD33/FLT3 cotargeting is an additional specific option for this subgroup. CLEC12A and CD33/CLEC12Adouble-positive expression was absent in CD34+CD38-CD45RA-CD90+ hematopoietic stem cells (HSCs) and nonhematopoietic tissue, while CD33 and FLT3 are expressed on HSCs. In summary, we show that expression of immunotargets in pediatric AML differs from known expression profiles in adult AML. We identify CLEC12A and CD33 as preferential generic combinatorial immunotargets in pediatric AML and CD33 and FLT3 as immunotargets specific for KMT2A-mutated infant AML.


Assuntos
Regulação Leucêmica da Expressão Gênica , Lectinas Tipo C/genética , Leucemia Mieloide Aguda/genética , Receptores Mitogênicos/genética , Lectina 3 Semelhante a Ig de Ligação ao Ácido Siálico/genética , Adolescente , Criança , Pré-Escolar , Feminino , Humanos , Imunoterapia , Lactente , Lectinas Tipo C/imunologia , Leucemia Mieloide Aguda/imunologia , Leucemia Mieloide Aguda/terapia , Masculino , Receptores Mitogênicos/imunologia , Lectina 3 Semelhante a Ig de Ligação ao Ácido Siálico/imunologia , Transcriptoma , Regulação para Cima
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...